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Abstract

INTRODUCTION: Landslides are one of the recurrent natural problems that are widespread
throughout the world, especially in mountainous areas, and cause a significant injury to and loss
of human life and damage to properties and infrastructures. This study aimed to assess
landslide susceptibility using the analytic hierarchy process (AHP) in Binalood Mountains,
Razavi Khorasan Province, Iran.

METHODS: Since the Binalood Mountains range has a high potential for landslides occurrence,
the present study went through to map landslide susceptibility. To accomplish this, the AHP
method was used, and then, receiver operating characteristic Area under the Curves (AUCs) was
prepared to evaluate the performance of the susceptibility map. Multiple data, such as lithology,
distance to faults, land use, distance to roads, altitude, slope, aspect, stream power index,
topographic wetness index, rainfall, distance from rivers, slope length index, and topographic
location index, were considered for delineating the landslide susceptibility maps. These
thematic layers were assigned suitable weights on the Saaty's scale according to their relative
importance in landslide occurrence in the study area. The assigned weights of the thematic
layers and their features were subsequently normalized using the AHP technique. Finally, all
thematic layers were integrated by a weighted linear combination method in a geographic
information system tool to generate landslide susceptibility maps.

FINDINGS: The landslide susceptibility maps are split into five classes, namely very low, low,
moderate, high, and very high. The results showed that the geological factor was the most
important factor affecting the occurrence of landslides in the study area. Generally, 47.8% of the
total area was considered high and very high-risk areas. The prediction accuracy of this map
showed the values of AUC equal to 81.7% that showed the AHP model had very good accuracy.

CONCLUSION: Overall, AHP is acceptable for landslide susceptibility mapping in the study area.
A landslide susceptibility map is a useful tool to help with land management in landslide-prone
areas. The results revealed that the predicted susceptibility levels were found to be in good
agreement with the past landslide occurrences. Possibly, this map can be used by the concerned
authorities in disaster management planning to prepare rescue routes, service centers, and
shelters.
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Introduction

andslides are dangerous geological
disasters that pose a serious hazard to
people’s lives and (22) and severe
damages to property. The death toll
caused by landslides is high worldwide (7). Due

to the large number of deaths caused by landslides
throughout the world, it is exigent to predict
landslide-prone areas. Although it is impossible to
prevent landslide occurrences, disasters can be
predicted and remedied using appropriate methods
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and analysis.

Among various landslide prediction methods,
landslide susceptibility mapping (LSM) is an
effective land use management technique, which
can provide favorable support for land managers
in decision-making (9, 22). Landslide hazard
and risk assessments start from landslide
susceptibility mapping of the territory under
investigation (8, 10). Generally, landslide
susceptibility is the spatial probability of land
sliding in a given area, depending on the
combination of various factors, such as geology,
land use, land cover, tectonics, slope, and aspect
(23). Landslide susceptibility mapping is a
helpful tool to predict and locate landslide
occurrences. Since the LSM provides valuable
information, local governments are inclined to
apply it in master planning (1, 6).

The LSM methods have been mainly divided
into two groups, namely qualitative and
quantitative. Qualitative methods depend on the
opinions and judgments of experts, while
quantitative methods conduct mathematical
analysis and establish a probability statistical
model to analyze the relationship between
landslide occurrences and influencing factors (21,
22). In this regard, geographic information
system (GIS)-based Multi-Criteria Decision
Making (MCDM) methods are valuable and
ingenious approaches to change either spatial or
non-spatial data into desired information that,
along with the subjective judgments of decision-
makers, would be able to perform in crucial
decisions (1, 5). The analytical hierarchy process
(AHP) is a semi-quantitative method and is the
most prevalent MCDM procedure (1) in which
decisions are taken using weights through pair-
wise relative comparisons without inconsistencies
in the decision process (11).

As this research goes through to map landslide
susceptibility by applying the AHP method, some
previous studies conducted using this method
have been mentioned in the following. Kumar et
al. (12) used AHP to map landslide susceptibility
in Tehrij Reservoir Rim Region, India. Based on
the results in their study, 18% of total areas were
located in high and very high susceptibility
regions. Nguyen et al. (14) applied AHP to
generate landslide susceptibility maps in the
Chen-Yu-Lan watershed, Taiwan. The validation
of the results by the binary classification method

showed that the model had reasonable accuracy.
Mandal and Mandal (13) used AHP to LSM in the
Lish River basin of eastern Darjeeling Himalaya,
India. To validate the results, a success rate curve
was developed with the help of landslide
susceptibility and cumulative percentage of
landslide occurrence, which showed an accuracy
level of 89.72%.

As landslides cause a huge loss of human life and
property annually all over the world, an accurate
assessment of the occurrence of these extreme
events is needed. Moreover, even a small increment
of the prediction accuracy may control the resulting
landslide susceptibility zones. Therefore, much more
case studies are required to be conducted to reach a
reasonable conclusion. Since the Binalood
Mountains range, Razavi Khorasan Province, Iran,
has a high potential for landslides occurrence, the
present study went through to map landslide
susceptibility. Landslide susceptibility is the key
component of landslide hazard and risk assessment
and in land use planning.

This study discussed landslide susceptibility
assessment and mapping using AHP in Binalood
Mountains. Binalood Mountains is important due
to the existence of communication roads (i.e.,
roads and national railways) to the city of
Mashhad, Iran, development plans, factories and
industrial estates, residential areas, gardens, and
agricultural lands. Therefore, it is necessary to
conduct scientific research on LSM.

Methods

Study Area

The study area is located in the Binalood
Mountains part of Razavi Khorasan Province
(Figure 1), which covers an area of approximately
3,500 km?2 with an altitude varying from 1,095 m
to 3,298 m above sea level. The slope angles of
the area range from 0 to 75°. It lies between
58°38' E and 59°35’ E longitude, and 36°1' N and
36°15" N latitude. According to the Iran
Meteorological Organization, the study area has a
cold and semi-arid climate. The mean annual
rainfall is around 320 mm, and the mean annual
temperature is 13°C (Zomorodian, 2013). The
study area is covered by various types of
lithological formations. The main lithology is
Conglomerate, Tuff, Slate, Phyllite, Marlstone,
Sandstone, Shale, Grayish Limestone and
Quaternary Terraces (24).
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Figure 1. Location map of the study area (Authors)

Landslide inventory map

Landslide inventory maps can be prepared
either by collecting historical information of
individual landslide events or using satellite
imageries and aerial photographs coupled with
field surveys by the global position system. In
the study area, the landslides were identified
from aerial photographs of 1964 on a scale of
1:20000 by the General Department of Natural
Resources of Razavi Khorasan Province. This
map was modified through field surveys and
Google Earth images (Figure 2).

Predisposing factors

A landslide is a complex phenomenon that
occurs due to several factors (16). The selection of
landslide influencing factors has an important
impact on the final LSM (15). In this study, 13
landslide influencing factors were considered
(Table 1), including lithology, distance to faults,
land use, distance to roads, altitude, slope, aspect,
stream power index (SPI), topographic wetness
index (TWI), rainfall, distance from rivers, slope
length index (LS), topographic location index (TPI).
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Figure 2. Factors used to identify the landslide susceptible areas in the present study (authors)
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Table 1. Causative factors of landslide in the study area

No Factor Description
Geology plays a highly important role in landslide susceptibility studies since different lithological
classes vary among themselves in terms of mechanical and hydraulic characteristics (18). Rock units in
the study area were digitized from geological maps with a 1:100000 scale from the Geological Survey of
Iran (Figure 2).

1 Lithology

Faults increase landslide susceptibility because the rocks near a fault are weaker, due to intense shearing
Distance to  (11). Faults were extracted from the geological map of Neishabour, Iran, with a 1:100000 scale. There
faults are several faults in the study area. By increasing the distance from faults, their effect on landslide
susceptibility decreases; therefore, a fault buffer map was also generated in ArcGIS (Figure 2).

N

Land use is an important factor for landslide susceptibility. This factor has both positive and negative
roles in the landslide occurrence. The land cover would cause the slopes to stabilize or may lead the
3 Land use slopes to be unstable (1, 22). In the current study, this layer was prepared from the General Department
of Natural Resources of Razavi Khorasan Province, and then, modified using Google Earth images

(Figure 2).
The construction of road activities is cutting the slopes. The natural slopes are disturbed due to these
Distance to human activities. The slopes near the road are more susceptible to landslide occurrence (16). In this
roads study, the distance of the road map was extracted through Google Earth images; consequently, a buffer

map was generated in ArcGIS (Figure 2).

Altitude is also a factor that can cause landslides occurrence. The altitude layer was extracted from
study area DEM in the ArcGIS software (Figure 2).

Slope is one of the most important parameters which influences landslide occurrence. The slope angles from
6 Slope 35' to 45' are more susceptible to failure. There are seldom slope failures for the slopes with an angle less than
15' (16). The slope map is extracted from the DEM of the study area (Figure 2).

5 Altitude

Aspect affects the susceptibility of landslide indirectly or directly. It influences the evaporation and
7 Aspect absorption of water (16). The direction of a slope can be related to the causative factors of landslides. In
this study, the aspect map was extracted from the DEM of the study area (Figure 2).

Stream Stream power index controls the potential erosive power of the overland flow. Therefore, this factor can be
8 Power considered as one of the factors of landslide occurrence (17). The SPI map was produced using the study area
Index Digital Elevation Model (DEM) in GIS-SAGA software (Figure 2).
Topographic The topographic wetness index (TWI) has been used to describe the effect of topography on the location

and size of saturated source areas of runoff generation (17). It is a commonly used tool to forecast the
amount of soil moisture. The TWI layer was produced using study area DEM in GIS-SAGA software
(Figure 2).

9 Wetness
Index

Rainfall is the most important landslide triggering parameter that increases pore-water pressure and
causes soil saturation and runoff through the infiltration of water into the soil (1). In this study, to obtain
10 Rainfall the rainfall layer, the average annual precipitation data of Razavi Khorasan Province were gathered from
the General Department of Natural Resources of Razavi Khorasan Province. Afterward, this layer was
extracted in ArcGIS through the Inverse Distance Weighting interpolation method (Figure 2).

The distance from rivers is considered a causative factor of landslides occurrence. Run-off of the rivers

Distance to  S2uses slope failure in the study area (16). Streams may adversely affect stability by eroding the slopes

11 5 or saturating the lower part of the material. An increase in the distance from rivers causes a decrease in
rivers their effect on landslide susceptibility; therefore, a river buffer map was also generated in ArcGIS
(Figure 2).
Slope A relationship is relevant between landslides and the SL. It is thought that an increase in the height and
12 Lenoth SL leads to a growth in slope instability (2). The slope length layer was produced using study area DEM
g in GIS-SAGA software (Figure 2).
The topographic position index is computed as a difference between the cell elevation and mean elevation of
Topographic neighboring cells. To categorize existing topographic landforms (i.e., slope, ridge, and valley) specific
13 Position values of thresholds are needed to be defined (19). Topographic position index was employed in this study
Index to identify ridge, lower flat, valley, and side slope. The topographic position index layer was produced using

study area GIS-SAGA software (Figure 2).
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Table 2. Scale of relative importance suggested by Saaty (12)

Scale Degree of Preference
1 Equally

3 Moderately
5 Strongly

7 Very strongly
9 Extremely

4,6 Intermediate

Explanation
Factors inherit equal contribution
One factor moderately favors over others
Judgment strongly favors over others

One factor very strongly favors over others

One

factor favors over others in the highest degree

Compensation between weights 1, 3, 5, 7, and 9

Analytic hierarchy process method

A nine-point scale, provided by Saaty, is used
for the pairwise comparison of causative factors.
Table 2 presents the nine points of Saaty’s scale.
The AHP consists of three main steps, including
generating the pair-wise comparison matrix,
computing the weights of the criterion, and
estimating the consistency ratio (18). One of the
important aspects of the AHP principle is the
calculation of consistency index (CI) and
consistency ratio (CR). If CR is greater than 0.1,
the comparison matrix is inconsistent and should
be revised (11).

Cl=Amax—-N/(N—1) (2)
CR=CIRI (3)

where Amax is the maximum eigenvalue and N
is the number of elements present in the
row/column of the matrix. In eq. 3, RI stands for
random index.

Efficiency of the landslide susceptibility map

The prediction of landslide susceptibility map
is usually produced wusing independent
information that is not available for building the
model. One of the ways to validate the landslide
susceptibility map is the ROC value and the area
under the ROC curve (17). In this study, the ROC
curve was applied as a worthy tool for appraising
the validation of landslide susceptibility maps

derived from the AHP method. The receiver
operating characteristic curve is mostly used to
show the connection between specificity and
sensitivity in a graphical way (1). The area under
the curve (AUC) gives a good idea of how well
the model performance is and varies from 0.5 to 1.
The closeness of AUC values to 1 indicates a
better performance of prediction models.

Findings

The present research is based on the use of
AHP method for landslide susceptibility map
(LSM) in the Binalood Mountains. The preference
values for the present study are tabulated in Table
2. The top part of Table 3 is the comparison of
causative factors, and the remainder of Table 2 is
the comparison of the classes in each factor.
These weight values indicate the importance of a
class or a factor. According to Table 3, geology is
the most important causative factor followed by
slope, fault, rainfall, and aspect, while causative
factors, such as distance from road and altitude,
are less important. Table 3 shows that all CR
values are less than 0.1, which demonstrates that
the preferences used to produce the comparison
matrices were consistent.

Table 3. AHP weights of factors/classes and consistency ratio

Factors Classes Weight CR
Geology 0.209
Slope 0.202
Fault 0.133
Rainfall 0.106
Aspect 0.074
Main factors TPI 0.055 0.08
Topographic indexes 0.050
Distance to river 0.045
Land use 0.033
Altitude 0.030
Road 0.016
Soft rocks 0.661
Geology Loose sediments 0.231
Hard rocks 0.108
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Table 3. Continued

<250 mm/year 0.045
250-300 mm/year 0.065
g 300-350 mm/year 0.101
sl 350-400 mm/zear 0161 001
400-450 mm/year 0.252
450-500 mm/year 0.376
<1500 m 0.046
1500-2000 m 0.107
Altitude 2000-2500 m 0.209 0.05
2500-3000 m 0.388
>3000 m 0.251
N 0.283
NE 0.213
NW 0.156
E 0.102
Aspect SE 0.072  0.06
SW 0.056
S 0.054
w 0.046
Flat 0.017
<300 m 0.502
300-600 m 0.239
Distance to river 600-900 m 0.127  0.04
900-1200 m 0.079
>1200 m 0.052
<100 m 0.441
100-200 m 0.272
Distance to road 200-300 m 0.138  0.03
300-400 m 0.090
>400 m 0.06
Barely 0.216
Woodland (very poor) 0.175
Very poor forest 0.168
Poor rang 0.150
Moderate range 0.136
Land use Dry farming 0.037  0.03
Mix (dry farming-orchard)  0.029
Orchard 0.027
Water farming 0.023
Rock 0.02
Urban 0.019
<5° 0.055
5-15° 0.126
Slop 15-30° 0447 00
>3(0° 0.372
SPI 0.49
Topographic indexes TWI 0.321  0.03
LS 0.189
<500 m 0.43
500-1000 m 0.261
Distance to fault 1000-1500 m 0.163  0.01
1500-2000 m 0.089
>2000 m 0.056

AHP: Analytical hierarchy process; CR: Consistency ratio; TPI: Topographic location index; SPI: Stream power index;

TWI: Topographic wetness index; LS: Slope length
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Table 4. Area and percent of landslide susceptibility

classes
Susceptibility classes Area (kmz) Percent
Very low 1079.7 30.9
Low 277.9 7.9
Moderate 468.8 13.4
High 979.8 28
Very high 685.6 19.8

Raster maps of each factor were assigned weight
values. The landslide susceptibility index map
containing numerical susceptibility information was
prepared using eq. 1. In this map, higher LSI values
indicated high susceptibility and lower values
represented low susceptibility (Figure 4).

Landslide susceptibility index values were
found in the range of 0.08-0.43 (Figure 4). Natural
break classifier was used to calculate class break
values of the continuous LSI map, which is
depicted in Figure 4, and accordingly, the LSI map
was classified into five categories, namely very
high susceptibility, high susceptibility, moderate
susceptibility, low susceptibility, and very low
susceptibility (Figure 4). It was revealed that 3%,
15%, 25%, 34%, and 23% of the entire arca
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belonged to very high susceptibility, high
susceptibility, moderate susceptibility, low
susceptibility, and very low susceptibility
classes, respectively (Table 4).

Validation of the landslide susceptibility map
Accuracy of landslide susceptibility map is the
capability of a map to delineate landslide-free
and landslide-susceptible areas. Validation was
performed to obtain the accuracy of the landslide
susceptibility map (12). Accuracy depends on
input data, model accuracy, size of the study area,
and experience of professionals. In this study, the
ROC curve was applied as a worthy tool
for appraising the validation of landslide
susceptibility maps derived from the AHP
method. The AUC was estimated at 0.817, which
meant that the overall success rate of the landslide
susceptibility zonation map was 81.7% (Figure 3).
To evaluate the landslide susceptibility map,
this map was combined with the landslide
inventory map of the study area (Figure 5). The
results showed that 0.31%, 4.9%, 12%, 38.3%, and
44.49% of the entire landslide inventory was found

ROC curve (in validation step)

[

Sensitivity

e e
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°%6 01 62 03 04 05 06 07 08 08 1.0
1 - Specificity

Figure 3. Threshold values for the classification of LSI map and ROC curves of LSM derived from the AHP method (Authors)
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Figure 4. Laﬁdslide susceptibility map and landslide susceptibility map of the study area (Authors)
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Figure 5. Landslide susceptibility map and landslide
inventory map of the study area (Authors)

in the very low, low, moderate, high, and very
high susceptibility classes, respectively (Table 5),
meaning that landslide susceptibility map had
acceptable efficiency.

Table 5. Number and percent of landslide in per class
of landslide susceptibility
Susceptibility Number of
classes landslides

Percent

Very low 3 0.31
Low 47 4.9
Moderate 116 12
High 368 38.3
Very high 427 44.49

Discussion and Conclusion

Landslide susceptibility mapping is important
for visualizing potentially landslide-prone areas in
mountainous and hilly terrain (10). This study
provided insights into the capability of AHP in
predicting landslide susceptible areas. In this
regard, 13 triggering factors were considered,
including geology aspect, altitude, land use, slope,
distance from the road, distance from faults,
distance from the river, TPI, TWI, LS, SPI, and
annual rainfall. The selection of these 13 factors
was based on the availability of data for the study
area and the relevance with respect to landslide
occurrences. According to the calculation using
AHP, the geology was the most influencing data
for landslide occurring by the weight of 0.209,
then slope, fault, and rainfall by the weights of
0.202, 0.133, and 0.106, respectively. The value
of ratio consistency was about 0.08 (less than 0.1),

which showed that the weight was valid and
acceptable used in spatial analysis.

Based on the map of landslide susceptibility,
30.9%, 7.9%, 13.4%, 28%, and 19.8% of the
entire area were found in the very low, low,
moderate, high, and very high susceptibility
classes, respectively. According to the findings,
very high and high susceptibility classes were
observed in the Mayan series formation that
consisted of mostly weathered Phyllite and Shale,
which are inherently failure-prone. A similar
finding was reported in previous studies (15, 21),
according to which geological factor was one of
the factors affecting landslides.

In the discussion of slopes, at lower slopes, the
force of gravity is less than the resistance forces
and at slopes more than 30°, due to climatic
conditions and vegetation in Binalood Mountains,
soil formation is less. Therefore, in Binalood
Mountains most of the highly susceptible areas
are observed in 15°-30° slope class. Furthermore,
in the study area, high susceptible areas were
located in high altitude classes. High altitudes are
often rendered unstable by the influence of
triggering factors, such as rainfall and
earthquakes. Based on Figure 2, in the Binalood
Mountains, most of the rainfall occurred at high
altitudes. According to the results of previous
studies (7, 11), altitudes were among the factors
affecting landslides. Considering this finding,
high and very high susceptibility classes are
observed in the north aspect. Since the Binalood
Mountains range is located in the northern
hemisphere, the north aspect is receiving less sun
radiation and high rainfall.

Among the topographic indexes, higher
susceptibility classes were reported in the higher
SPI and TWI ranges. An increase in TWI ranges
boosts water infiltration which often leads to an
increase in the pore water pressure and further
reduces the soil strength, hence making the terrain
prone to slope failures. Stream power index
indicates the erosive power of the streams, and
higher ranges of SPI are related to the high
erosive power of the streams.

Since there are several roads and waterways in
Binalood Mountains, it is expected that high
susceptibility classes be observed in the areas
closer to rivers. This can be attributed to the
stream bank erosion which further leads to
landslides. Due to slope failure, landslides may
occur on the road and the side of the slopes
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affected by roads. In this respect, high
susceptibility classes are observed in the areas
closer to roads. Similar findings were reported in
a previous study regarding the effect of roads and
waterways on landslides (1). Among the land use
classes, bare and very poor woodland areas have
high susceptibility.

In the present study, the ROC curve method
was used to validate the accuracy of landslide
susceptibility map. The results of the present
study revealed that the landslide susceptibility
map presented good performance in landslide
susceptibility assessment (AUC=0.817). In the
end, the observed landslide map was overlaid with
the landslide susceptibility map. The results of
LSM were also found to be matching with the
field conditions. Overall, AHP was acceptable for
landslide susceptibility mapping in the study area.

The produced LSM in this study can be a good
source for decision-makers, planners, and
engineers. This map provides valuable
information so that attention can be paid to the
high and very high susceptible zones for any kind
of developmental work.
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