Volume 17, Issue 4 (9-2025)                   jorar 2025, 17(4): 242-251 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi Kivi H, Zamani E. The Role of Unmanned Aerial Vehicles in Diverse Stages of Disaster Management: A Narrative Review. jorar 2025; 17 (4) :242-251
URL: http://jorar.ir/article-1-1045-en.html
Urmia University of Medial Sciences, Miandoab Schools of Medical Sciences, Miandoab, Iran
Abstract:   (22 Views)
INTRODUCTION: The unpredictable magnitude and scope of disasters make it particularly challenging to respond effectively and provide timely assistance to affected populations. In many situations, geographical location, regional topography, and adverse weather conditions, especially in the early stages, hinder rapid access to disaster-affected areas. In recent years, Unmanned Aerial Vehicles (UAVs), commonly known as drones, have emerged as an innovative technology that offers rapid data collection, real-time surveillance, and access to remote areas, thereby enhancing situational awareness and decision-making during disasters.
METHODS: This study employed a narrative review methodology to synthesize existing research on the application of UAVs across the pre-disaster, during and post-disaster phases of disaster management. A comprehensive search of relevant databases yielded a total of 1,986 articles. After removing duplicate records and screening titles, abstracts, and full texts based on predefined inclusion criteria, nine articles were selected for final analysis and review.
FINDINGS: The findings were categorized into four main phases of disaster management: prevention and mitigation, preparedness, response, and recovery. The reviewed studies demonstrated that UAVs play a significant role in improving situational awareness, damage assessment, Search and Rescue (SAR) operations, infrastructure monitoring, and recovery planning. Despite certain technical, regulatory, and operational challenges, the overall evidence highlights the substantial potential of UAVs to enhance disaster management effectiveness across all phases.
CONCLUSION: According to the results of this review, systematic planning for the integration of UAV technology across various stages of disaster management is essential. Although challenges remain, these can be addressed through the adoption of advanced technologies such as deep learning algorithms, as well as improved equipment, software, and analytical tools for data collection and processing. Such advancements can significantly enhance the cost-effectiveness and operational value of UAVs, supporting more efficient disaster response, mitigation, and recovery strategies.
Full-Text [PDF 371 kb]   (4 Downloads)    

References
1. Matsuoka M. Assessment of landslide susceptibility area using RS and GIS in Krabi. GMSARN Int J. 2018;12:181-188.
2. Centre for Research on the Epidemiology of Disasters (CRED). Human cost of disasters: An overview of the last 20 years (2000-2019). Brussels: CRED; 2020. Available from: https://www.cred.be/sites/default/files/CRED-Disaster-Report-Human-Cost2000-2019.pdf. Accessed Oct 29, 2024.
3. O'Neill PA. The ABC's of disaster response. Scand J Surg. 2005;94(4):259-266. [DOI:10.1177/145749690509400403]
4. Khaing TW, Tantanee S, Pratoomchai W, Mahavik N. Coupling flood hazard with vulnerability map for flood risk assessment: A case study of Nyaung-U Township in Myanmar. GMSARN Int J. 2021;15:127-138.
5. Kolivand P, Karimi Kivi H, Hasheminezhad SF, Saberian P, Shamspour N. The presence of international relief teams in the 2023 Turkish earthquake: challenges, strengths, and lessons learned. Prehospital and Disaster Medicine. 2023;38(3):419-420 [DOI:10.1017/S1049023X23000456]
6. Apvrille L, Li LW. Safe and secure support for public safety networks. In: Wireless public safety networks. Elsevier; 2017:185-210. [DOI:10.1016/B978-1-78548-053-9.50009-3]
7. Khan A, Gupta S, Gupta SK. Emerging UAV technology for disaster detection, mitigation, response, and preparedness. J Field Robot. 2022;39(6):905-955. [DOI:10.1002/rob.22075]
8. Daud SM, Yusof MY, Heo CC, Khoo LS, Singh MK, Mahmood MS, et al. Applications of drone in disaster management: A scoping review. Sci Justice. 2022; 62(1):30-42. [DOI:10.1016/j.scijus.2021.11.002]
9. Petrides P, Kolios P, Kyrkou C, Theocharides T, Panayiotou C. Disaster prevention and emergency response using unmanned aerial systems. In: Smart cities in the Mediterranean. Cham: Springer; 2017:379-403. [DOI:10.1007/978-3-319-54558-5_18]
10. Shahmoradi J, Talebi E, Roghanchi P, Hassanalian M. A comprehensive review of applications of drone technology in the mining industry. Drones. 2020;4(3):34. [DOI:10.3390/drones4030034]
11. Darvishpoor S, Roshanian J, Raissi A, Hassanalian M. Configurations, flight mechanisms, and applications of unmanned aerial systems: A review. Prog Aerosp Sci. 2020;121:100694. [DOI:10.1016/j.paerosci.2020.100694]
12. Wang Y, Wang P, Chen P. Unmanned aerial vehicle system. U.S. Patent 10,410,055. Washington (DC): U.S. Patent and Trademark Office; 2019.
13. Waharte S, Trigoni N. Supporting search and rescue operations with UAVs. In: Proc 2010 Int Conf Emerging Security Technologies. IEEE; 2010:142-147. [DOI:10.1109/EST.2010.31]
14. Baker CA, Rapp RR, Elwakil E, Zhang J. Infrastructure assessment post-disaster: Remotely sensing bridge structural damage by UAV in low-light conditions. J Emerg Manag. 2020;18(1):27-41. [DOI:10.5055/jem.2020.0448]
15. Lyu M, Zhao Y, Huang C, Huang H. Unmanned aerial vehicles for search and rescue: A survey. Remote Sens. 2023;15(13):3266. [DOI:10.3390/rs15133266]
16. Kamilaris A, Prenafeta-Boldú FX. Disaster monitoring using unmanned aerial vehicles and deep learning. arXiv preprint. 2018;arXiv:1807.11805.
17. Sherstjuk V, Zharikova M, Sokol I. Forest fire monitoring system based on UAV team, remote sensing, and image processing. In: Proc 2018 IEEE DSMP. IEEE; 2018:590-594. [DOI:10.1109/DSMP.2018.8478590]
18. Feng Q, Liu J, Gong J. Urban flood mapping based on UAV remote sensing and random forest classifier. Water. 2015;7(4):1437-1455. [DOI:10.3390/w7041437]
19. Jain T, Sibley A, Stryhn H, Hubloue I. Comparison of UAV-assisted triage versus standard practice in mass-casualty incidents. Prehosp Disaster Med. 2018;33(4):375-380. [DOI:10.1017/S1049023X18000559]
20. Fernandez-Pacheco AN, Rodriguez LJ, Price MF, Perez AB, Alonso NP, Rios MP. Drones for training on mass casualty incidents: A simulation study. Medicine (Baltimore). 2017;96(26):e7159. [DOI:10.1097/MD.0000000000007159]
21. Raheja S, Obaidat MS, Kumar M, Sadoun B, Bhushan S. Hybrid MCDM framework for polluted cities assessment. Simul Model Pract Theory. 2022; 118: 102540 [DOI:10.1016/j.simpat.2022.102540]
22. Khan A, Gupta S, Gupta SK. UAV-enabled disaster management: Applications, open issues, and challenges. In: Advanced computer science applications. Apple Academic Press; 2023:43-58. [DOI:10.1201/9781003369066-5]
23. Casagli N, Frodella W, Morelli S, Tofani V, Ciampalini A, Intrieri E, et al. Remote sensing techniques for landslide mapping and early warning. Geoenviron Disasters. 2017;4:1-23. [DOI:10.1186/s40677-017-0073-1]
24. Erdelj M, Natalizio E. UAV-assisted disaster management: Applications and open issues. In: Proc 2016 ICNC. IEEE; 2016:1-5. [DOI:10.1109/ICCNC.2016.7440563]
25. Tatham P. Suitability of UAV systems for initial needs assessment in humanitarian disasters. Int J Risk Assess Manag. 2009;13(1):60-78. [DOI:10.1504/IJRAM.2009.026391]
26. Chen QJ, He YR, He TT, Fu WJ. Typhoon disaster analysis using UAV remote sensing. Int Arch Photogramm Remote Sens Spat Inf Sci. 2020;42(3):959-964. [DOI:10.5194/isprs-archives-XLII-3-W10-959-2020]
27. Niedzielski T, Jurecka M, Miziński B, Pawul W, Motyl T. First successful rescue using UAV human detection system. Remote Sens. 2021;13(23):4903. [DOI:10.3390/rs13234903]
28. Yeong SP, King LM, Dol SS. Marine search and rescue using UAVs. Int J Mar Environ Sci. 2015;9(2):396-399.
29. Karimi Kivi H, Kolivand P, Saberian P, Abdi H. Lessons learned from the Khoy earthquake, Iran, 2023. Disaster Med Public Health Prep. 2023;17:e426. [DOI:10.1017/dmp.2023.57]
30. Półka M, Ptak S, Kuziora L. UAVs for search and rescue operations. Procedia Eng. 2017;192:748-752. [DOI:10.1016/j.proeng.2017.06.129]
31. Van Tilburg C. First report of drone use for search and rescue. Wilderness Environ Med. 2017;28(2):116-118. [DOI:10.1016/j.wem.2016.12.010]
32. McRae JN, Gay CJ, Nielsen BM, Hunt AP. High-altitude UAV search and rescue: A case study. Wilderness Environ Med. 2019;30(3):287-290. [DOI:10.1016/j.wem.2019.03.004]
33. Meshcheryakov RV, Trefilov PM, Chekhov AV, Rusakov KD, et al. Swarm of quadcopters for search operations. IFAC-Papers Online. 2019;52(25):14-18. [DOI:10.1016/j.ifacol.2019.12.438]
34. Claesson A, Bäckman A, Ringh M, Svensson L, Nordberg P, Djärv T, et al. AED delivery by drone versus EMS. JAMA. 2017;317(22):2332-2334. [DOI:10.1001/jama.2017.3957]
35. Nimilan V, Manohar G, Sudha R, Stanley P. Drone-aid: Aerial medical assistance. Int J Innov Technol Explor Eng. 2019;8. [DOI:10.35940/ijitee.K1260.09811S19]
36. Yakushiji K, Fujita H, Murata M, Hiroi N, Hamabe Y. Short-range UAV transportation during disasters in Japan. Drones. 2020;4(4):68. [DOI:10.3390/drones4040068]
37. Restas A. Drone applications supporting disaster management. World J Eng Technol. 2015;3(3):316-321. [DOI:10.4236/wjet.2015.33C047]
38. Schweier C, Markus M. Classification of collapsed buildings for damage assessment. Bull Earthq Eng. 2006;4:177-192. [DOI:10.1007/s10518-006-9005-2]
39. Restas A. Unmanned aircraft system applications: Firefighting. In: Introduction to unmanned systems. 2012.
40. Duo E, Trembanis AC, Dohner S, Grottoli E, Ciavola P. UAV-based post-event coastal assessment. Nat Hazards Earth Syst Sci. 2018;18(11):2969-2989. [DOI:10.5194/nhess-18-2969-2018]
41. Andreadakis E, Diakakis M, Vassilakis E, et al. UAV-aided post-flood discharge estimation. Remote Sens. 2020; 2(24):4183. [DOI:10.3390/rs12244183]
42. Rehor M. Classification of building damage using laser scanning. Photogramm J Finn. 2007;20(2):54-63.
43. Restas A. Tactical analysis of UAV application in forest fire management. 2014. [DOI:10.14195/978-989-26-0884-6_172]
44. Ambrosia V, Hinkley E, Brass JA, et al. Western states UAV fire mission. In: USDA Forest Service Remote Sensing Conf. 2006.
45. Molnar A. Development of UAV applications at Óbuda University. AROP Project Conference. Szolnok, Hungary; 2014.
46. Greenwood F, Nelson EL, Greenough PG. UAV damage assessment during 2017 hurricanes. PLoS One. 2020;15(2):e0227808. [DOI:10.1371/journal.pone.0227808]
47. Clark DG, Ford JD, Tabish T. Role of UAVs in Arctic emergency response. PLoS One. 2018;13(12):e0205299. [DOI:10.1371/journal.pone.0205299]
48. Yamazaki Y, Premachandra C, Perea CJ. Audio-based human detection using UAVs.IEEE Access.2020;8:1-10. [DOI:10.1109/ACCESS.2020.2998776]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | http://www.journalsystem.ir/demo5

Designed & Developed by : Yektaweb